
Daybed Documentation
Release 1

Spiral Project

May 28, 2015

Contents

1 Why ? 3

2 How ? 5

3 Use Cases 7

4 Technologies 9

5 Comparison 11

6 More documentation 13
6.1 Installing Daybed . 13
6.2 How to use the Daybed API . 15
6.3 Daybed field types . 24
6.4 Permissions . 33
6.5 Terminology . 37

Python Module Index 39

i

ii

Daybed Documentation, Release 1

Daybed is an Open Source Web API providing validation and storage as a service.

Contents 1

Daybed Documentation, Release 1

2 Contents

CHAPTER 1

Why ?

Usually, when a Web application requires a backend for storage and validation, one of the following solutions is
employed :

• A custom API is developed and deployed (reinvent the wheel)

• A commercial and closed-source service is used (Google Forms)

• A CMS is used as a backoffice for customizable content types (twist)

To avoid those situations and make it easy to get your storage backend ready in seconds, we’ve created Daybed.

Daybed is :

• a minimalist, robust, dynamic and generic API ;

• a validation layer with schemaless storage ;

• a reusable layer of permissions logic ;

• a universal REST endpoint for Web and mobile apps ;

• a key component for rapid application building ;

• a simple service deployed and integrated without coding.

3

Daybed Documentation, Release 1

4 Chapter 1. Why ?

CHAPTER 2

How ?

1. Create a model by posting its definition (title, fields, ...)

2. Define the permissions sets (modify definition, create, update or delete records, ...)

3. Use the allocated RESTful endpoint in your application (GET, POST, PUT, ...)

4. Store and query records !

Since Daybed talks REST and JSON, you can basically use it as a remote storage with any of your favorite technologies
(Python, Android, iOS, AngularJS, Ember.js, Backbone.js, etc.).

Note: Currently, the authentication relies on Basic authentication and Hawk

5

https://github.com/hueniverse/hawk

Daybed Documentation, Release 1

6 Chapter 2. How ?

CHAPTER 3

Use Cases

• Mobile apps

• Full JavaScript apps

• Online forms

• Data Wiki

• Collaborative Web mapping

Using Daybed in its first versions, we built:

• daybed-map, a geo-pad where you can create you own maps with custom fields, using backbone-forms

• A password manager

• A generic CRUD application using backbone-daybed ;

• A TODO list using jquery-spore ;

7

http://leplatrem.github.io/daybed-map/
https://github.com/powmedia/backbone-forms
https://github.com/spiral-project/daybed-keypass
http://spiral-project.github.io/backbone-daybed/
https://github.com/spiral-project/backbone-daybed
http://daybed.lolnet.org/
https://github.com/nikopol/jquery-spore

Daybed Documentation, Release 1

8 Chapter 3. Use Cases

CHAPTER 4

Technologies

Daybed uses the following stack by default :

• Pyramid, a robust and powerful python Web framework

• Cornice, a REST framework for Pyramid

• Colander for the schema validation part

• Redis as the default persistence backend

• ElasticSearch as indexing and faceted search engine

• CouchDB as an alternative persistence backend

9

http://www.pylonsproject.org
https://cornice.readthedocs.org
http://colander.readthedocs.org
http://redis.io
http://www.elasticsearch.org
http://couchdb.apache.org

Daybed Documentation, Release 1

10 Chapter 4. Technologies

CHAPTER 5

Comparison

Daybed has many competitors, yet none of them shares the same approach or features set.

Strategy Custom dedicated API Generated
code

Competitors

Project Daybed Django REST framework, Restify,
express, Struts...

Python Eve Loop-
back

Hoodie Google
Forms

Minimalist
Validation
Permissions
Dynamic
schemas
Reusable
instance
Dynamic API
end-points
Raw data access
Agnostic (REST)
Requires SDK
Open Source
Faceted search

Sources: http://python-eve.org ; http://hood.ie ; http://loopback.io ;

11

http://python-eve.org
http://hood.ie
http://loopback.io

Daybed Documentation, Release 1

12 Chapter 5. Comparison

CHAPTER 6

More documentation

6.1 Installing Daybed

Daybed has the following requirements:

• A Python 2.6, 2.7, 3.x or PyPy installation

• A CouchDB or Redis, and an ElasticSearch server instance running

Daybed comes with a Makefile to simplify your life when developing. To install daybed in your current virtualenv and
get started, just run:

$ make install

Then, running the test suite is a good way to check that everything is going well, and is correctly installed. You can
run them with:

$ make tests

The test suite will run all the available tests for every supported Python environment. You can check the current build
status on Travis.

6.1.1 Installation on *nix systems

Standard installation

First, make sure you have CouchDB installed on your system.

Note: If you’re running OSX, you can use Homebrew to install Daybed required dependencies:

$ brew install python couchdb

Make sure you follow any extra setup instruction provided by Homebrew for these packages.

It’s highly recommended to create and use a Python virtualenv local to the project:

$ virtualenv `pwd`/.venv
$ source .venv/bin/activate

Now, install Daybed’s Python dependencies in this venv:

13

http://python.org/
http://pypy.org/
http://couchdb.apache.org/
http://redis.io
http://www.elasticsearch.org/
https://travis-ci.org/spiral-project/daybed
http://couchdb.apache.org/
http://brew.sh/
http://virtualenv.readthedocs.org/

Daybed Documentation, Release 1

$ make install

Don’t forget to start your CouchDB and ElasticSearch server instances:

$ sudo service couchdb start
$ sudo service elasticsearch start

Then start the Daybed server:

$ make serve

Development installation

If you start hacking on Daybed, a good practice is to ensure the tests keep passing for all supported Python environ-
ments:

$ make tests

Note: OSX users can install all supported Python platforms using this Homebrew command:

$ brew install python python3 pypy couchdb

Once you’re all set, keep on reading for using daybed.

6.1.2 Using Docker images

Docker allows you to easily run a Daybed instance, locally or in production.

Two steps setup

Note: You shall use Docker links, available in version 0.11+.

Run a CouchDB instance:

$ sudo docker run --name couchdb klaemo/couchdb

Run an ElasticSearch instance:

$ sudo docker run --name couchdb dockerfile/elasticsearch

Run a Daybed container linked to the previous ones:

sudo docker run --link=couchdb:couchdb \
--link=elasticsearch:elasticsearch \
--publish=8000:8000 makinacorpus/daybed

Test it!

$ curl http://localhost:8000/v1/

14 Chapter 6. More documentation

http://couchdb.apache.org/
http://www.elasticsearch.org/
http://docker.io
https://docs.docker.com/userguide/dockerlinks/
http://couchdb.apache.org/
http://www.elasticsearch.org/

Daybed Documentation, Release 1

Runtime parameters

A number of environment variables can be set at runtime, to control the backend connection for instance:

$ sudo docker run ... --env BACKEND_DB_NAME=mydb ...

See the Dockerfile file for a complete list of variables, and their default value.

Custom configuration

In order to run the container with a custom configuration file. Just create a file production.ini in a custom folder
(e.g. /myconf), and mount it this way:

$ sudo docker run ... --volume=/myconf:/opt/apps/daybed/conf ...

Build the image from sources

From the repository folder:

$ make clean
$ sudo docker build -t daybed .

6.2 How to use the Daybed API

Daybed is a REST interface you can use to create model definitions, edit them and publish data that complies to these
models.

Let’s say you want to have a Daybed-managed todo list. Follow the steps and you will have a grasp of how Daybed
works.

To simplify API calls, you can use httpie which performs HTTP requests easily.

All examples in this section are using httpie against a local Daybed server running on port 8000.

Daybed uses Hawk, so to run the following example, you’ll need to install the requests-hawk module.

6.2.1 Listing supported fields

Daybed supports several field types to build your model definition. All details are given in the dedicated documentation
section.

You can also get a list of these fields and their parameters programmatically, on the /fields endpoint:

http GET http://localhost:8000/v1/fields --verbose --json

6.2.2 Authentication

You need to be authenticated to be able to run most of the commands. In order to get authenticated, the first thing to
do is to get some credentials from Daybed.

In order to get yours, you need to send a POST request:

6.2. How to use the Daybed API 15

https://github.com/jkbr/httpie
https://github.com/hueniverse/hawk
https://github.com/mozilla-services/requests-hawk

Daybed Documentation, Release 1

http POST http://localhost:8000/v1/tokens

HTTP/1.1 201 Created
Content-Length: 273
Content-Type: application/json; charset=UTF-8
Date: Thu, 24 Jul 2014 16:25:49 GMT
Server: waitress

{
"credentials": {

"algorithm": "sha256",
"id": "e0394574578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca",
"key": "416aa1287121218feeb9b751a9614959a1c95fd09aba5959bab7c484dcd1b198"

},
"token": "ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22"

}

In your next requests, you can either :

• use the token, and rely on a Hawk library to wrap everything (recommended);

• use the credentials pair of id and key, and build the Hawk Authorization header yourself (or probably
via ‘‘hawk.js‘‘).

If you want to get always the same token for a given user, you can access the endpoint using Basic Auth Authorization
scheme:

http POST localhost:8000/v1/tokens --auth admin:password -v

POST /v1/tokens HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate, compress
Authorization: Basic YWRtaW46cGFzc3dvcmQ=
Content-Length: 0
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 201 Created
Content-Length: 266
Content-Type: application/json; charset=UTF-8
Date: Fri, 07 Nov 2014 15:09:01 GMT
Server: waitress

{
"credentials": {

"algorithm": "sha256",
"id": "371ef18f8a054e5c9fb0961cc5b81006080e9ad22078d30b3727c7c32843579f",
"key": "87e72a8e5dcaf8b4be00b8729462814da3d438ce2fd8b6efee335db722d8369d"

},
"token": "9f19de0237c9bd59f803de1785f7aea4e3499b6929df3428e1b415fed81f797a"

}

In that case you will get a 201 Created on the creation time and then a 200 each time you ask for the same token.

6.2.3 Model management

PUT and POST /v1/models

16 Chapter 6. More documentation

Daybed Documentation, Release 1

You can create models without being authenticated, since model creation is allowed to everyone by default.

When you are authenticated, all the objects you create will be associated to your credentials id.

First, you put a definition under the name “todo” using a PUT request on /models:

http PUT http://localhost:8000/v1/models/todo

Use the token as the auth value, as expected by the requests-hawk library.

echo '{"definition":
{
"title": "todo",
"description": "A list of my stuff to do",
"fields": [

{
"name": "item",
"type": "string",
"label": "The item"

},
{

"name": "status",
"type": "enum",
"choices": [

"done",
"todo"

],
"label": "is it done or not"

}
]

}
}' > definition

http PUT http://localhost:8000/v1/models/todo @definition \
--verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

And you receive the model id back

HTTP/1.1 200 OK
Content-Length: 14
Content-Type: application/json; charset=UTF-8
Date: Thu, 24 Jul 2014 18:35:10 GMT
Server: waitress

{
"id": "todo"

}

Since the token was used, the new model was associated to your id, and you are the only one to get read and write
permissions. Of course, the model permissions can be changed later.

Note: In case you don’t want to define a name yourself for your model, you can do the exact same request, replacing
the PUT http method by a POST. A random name will be generated.

The definition properties are:

• title: The model title

• description: The model description

6.2. How to use the Daybed API 17

Daybed Documentation, Release 1

• fields: The model fields’ list. See fields documentation

• extra: An optional property to store custom data to your model.

GET /models

Returns the list of models where you have the permission to read the definition:

http GET http://localhost:8000/v1/models --verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

GET /v1/models HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="3NXv...=", hash="B0we...=", id="36...0", ts="1407166852", nonce="tQlJHv"
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 202
Content-Type: application/json; charset=UTF-8
Date: Mon, 04 Aug 2014 15:40:52 GMT
Server: waitress

{
"models": [

{
"description": "A list of my stuff to do.",
"id": "todo",
"title": "Todo"

}
]

}

GET /v1/models/{modelname}

You can now get your models back:

http GET http://localhost:8000/v1/models/todo \
--verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

GET /v1/models/todo HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="CEhSQuh8tqGY8RbdrnMvGyIRJBDmdxJeu2/HIRB0pbQ=", hash="B0weSUXsMcb5UhL41FZbrUJCAotzSI3HawE1NPLRUz8=", id="e03945
74578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca", ts="1406228025", nonce="4sEpMQ"
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 1330
Content-Type: application/json; charset=UTF-8
Date: Thu, 24 Jul 2014 18:53:45 GMT
Server: waitress

18 Chapter 6. More documentation

Daybed Documentation, Release 1

{
"permissions": {

"e0394574578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca": [
'create_record',
'delete_all_records',
'delete_model',
'delete_own_records',
'read_permissions',
'read_all_records',
'read_definition',
'read_own_records',
'update_permissions',
'update_all_records',
'update_definition',
'update_own_records',

]
},
"definition": [

{
"description": "A list of my stuff to do",
"fields": [

{
"label": "The item",
"name": "item",
"type": "string"

},
{

"choices": [
"done",
"todo"

],
"label": "is it done or not",
"name": "status",
"type": "enum"

}
],
"title": "todo"

}
],
"records": []

}

Note: You will get a 401 - Unauthorized response if you don’t have the permission to read the model defini-
tion.

6.2.4 Pushing records

POST /v1/models/{modelname}/records

PUT /v1/models/{modelname}/records/{id}

Now that you’ve defined the schema, you may want to push some real record there:

http POST http://localhost:8000/v1/models/todo/records item="work on daybed" status="done" \
--verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

6.2. How to use the Daybed API 19

Daybed Documentation, Release 1

POST /v1/models/todo/records HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="4Sly1HVkkKsRk43dHOLw/e/AmWeoDEe9ZbVu9cugzg0=", hash="KE3ivKqZxHPTg1yzUAJHOu/PYiYWvEoh3SZxzYshikw=", id="e03945
74578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca", ts="1406228375", nonce="T2NP4V"
Content-Length: 44
Content-Type: application/json; charset=utf-8
Host: localhost:8000
User-Agent: HTTPie/0.8.0

{
"item": "work on daybed",
"status": "done"

}

HTTP/1.1 201 Created
Content-Length: 42
Content-Type: application/json; charset=UTF-8
Date: Thu, 24 Jul 2014 18:59:35 GMT
Location: http://localhost:8000/v1/models/todo/records/ebc9f07c8faa4969a76f46b8c514fac6
Server: waitress

{
"id": "ebc9f07c8faa4969a76f46b8c514fac6"

}

The server sends us back the id of the newly created record.

Note: You can also only validate the data your are sending, by setting the Validate-Only header, which will
prevent storing it as a record.

GET /v1/models/{modelname}/records

Using the GET method, you can get back all the records you have created:

http GET http://localhost:8000/v1/models/todo/records \
--json \
--verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

GET /v1/models/todo/records HTTP/1.1 [5/4051]
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="OQ9PYGfLhE7L0TPHFpYteHI0j3PBnKgEjyYjMQXMsaM=", hash="NVuBm+XMyya3Tq4EhpZ0cQWjVUyIA8sKnySkKDOIM4M=", id="e0394574578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca", ts="1406232484", nonce="_m0VvY"
Content-Type: application/json; charset=utf-8
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 151
Content-Type: application/json; charset=UTF-8
Date: Thu, 24 Jul 2014 20:08:04 GMT
Server: waitress

{
"records": [

20 Chapter 6. More documentation

Daybed Documentation, Release 1

{
"item": "work on daybed",
"status": "done"

},
]

}

6.2.5 Get back a definition

GET /v1/models/{modelname}/definition

http GET http://localhost:8000/v1/models/todo/definition \
--verbose \
--auth-type=hawk \
--auth='504fd8148d7cdca10baa3c5208b63dc9e13cad1387222550950810a7bdd72d2c:'

GET /v1/models/todo/definition HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="k9edIqpoz7cSUJQTroXgM4vgDoZb2Z2KO2u40QCbtYk=", hash="B0weSUXsMcb5UhL41FZbrUJCAotzSI3HawE1NPLRUz8=", id="220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871", ts="1406645426", nonce="meNBWv"
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 224
Content-Type: application/json; charset=UTF-8
Date: Tue, 29 Jul 2014 14:50:26 GMT
Server: waitress

{
"description": "A list of my stuff to do",
"fields": [

{
"label": "The item",
"name": "item",
"type": "string"

},
{

"choices": [
"done",
"todo"

],
"label": "is it done or not",
"name": "status",
"type": "enum"

}
],
"title": "todo"

}

6.2.6 Get back the model permissions

GET /v1/models/{modelname}/permissions

6.2. How to use the Daybed API 21

Daybed Documentation, Release 1

http GET http://localhost:8000/v1/models/todo/permissions \
--verbose \
--auth-type=hawk \
--auth='504fd8148d7cdca10baa3c5208b63dc9e13cad1387222550950810a7bdd72d2c:'

GET /v1/models/todo/permissions HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="G8PntYqGA0DiP4EC0qvvr70tmCZrsVBdTTTBq9ZeKYg=", hash="B0weSUXsMcb5UhL41FZbrUJCAotzSI3HawE1NPLRUz8=", id="220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871", ts="1406645480", nonce="4D0z9n"
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 293
Content-Type: application/json; charset=UTF-8
Date: Tue, 29 Jul 2014 14:51:20 GMT
Server: waitress

{
"220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871": [

"create_record",
"delete_all_records",
"delete_model",
"delete_own_records",
"read_all_records",
"read_definition",
"read_own_records",
"read_permissions",
"update_all_records",
"update_definition",
"update_own_records"
"update_permissions",

]
}

6.2.7 Change model permissions

As described in the dedicated section about permissions, you can add or remove permissions from models.

For example, you may want to give the permission to read everyone’s records to anonymous users (i.e. Everyone).

Using a PATCH request, existing permissions configuration is not overwritten completely :

PATCH /v1/models/{modelname}/permissions

echo '{"Everyone": ["+read_all_records"]}' | http PATCH http://localhost:8000/v1/models/todo/permissions \
--json \
--verbose \
--auth-type=hawk \
--auth='504fd8148d7cdca10baa3c5208b63dc9e13cad1387222550950810a7bdd72d2c:'

PATCH /v1/models/todo/permissions HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="CWT9du2YxOoTb2i5d15bBTA4XiSYY/99ybh6g7welLM=", hash="Nt8m2h1nc5lVUItOobOliVj6hul0FYXmwpEmkjyp+WU=", id="220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871", ts="1406645940", nonce="2il3kl"
Content-Length: 34
Content-Type: application/json; charset=utf-8

22 Chapter 6. More documentation

Daybed Documentation, Release 1

Host: localhost:8000
User-Agent: HTTPie/0.8.0

{
"Everyone": [

"+read_all_records"
]

}

HTTP/1.1 200 OK
Content-Length: 333
Content-Type: application/json; charset=UTF-8
Date: Tue, 29 Jul 2014 14:59:00 GMT
Server: waitress

{
"220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871": [

"create_record",
"delete_all_records",
"delete_model",
"delete_own_records",
"read_all_records",
"read_definition",
"read_own_records",
"read_permissions",
"update_all_records",
"update_definition",
"update_own_records"
"update_permissions",

],
"system.Everyone": [

"read_all_records"
]

}

If you add an unknown permission or modify the permissions of an unknown id, you will get an error.

6.2.8 Reset permissions

Using a PUT request, existing permissions will be completely erased and replaced by the new ones.

Using the ALL shortcut, you can grant all available permissions.

PUT /v1/models/{modelname}/permissions

echo '{"Everyone": ["read_definition"], "Authenticated": ["ALL"]}' | http PUT http://localhost:8000/v1/models/todo/permissions \
--json \
--verbose \
--auth-type=hawk \
--auth='504fd8148d7cdca10baa3c5208b63dc9e13cad1387222550950810a7bdd72d2c:'

PATCH /v1/models/todo/permissions HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Hawk mac="CWT9du2YxOoTb2i5d15bBTA4XiSYY/99ybh6g7welLM=", hash="Nt8m2h1nc5lVUItOobOliVj6hul0FYXmwpEmkjyp+WU=", id="220a1c4212d8f005f0f56191c5a91f8fe266282d38b042e6b35cad8034f22871", ts="1406645940", nonce="2il3kl"
Content-Length: 34
Content-Type: application/json; charset=utf-8
Host: localhost:8000

6.2. How to use the Daybed API 23

Daybed Documentation, Release 1

User-Agent: HTTPie/0.8.0

{
"Everyone": [

"read_definition"
],
"Authenticated": [

"ALL"
]

}

HTTP/1.1 200 OK
Content-Length: 333
Content-Type: application/json; charset=UTF-8
Date: Tue, 29 Jul 2014 14:59:00 GMT
Server: waitress

{
"system.Authenticated": [

"create_record",
"delete_all_records",
"delete_model",
"delete_own_records",
"read_all_records",
"read_definition",
"read_own_records",
"read_permissions",
"update_all_records",
"update_definition",
"update_own_records"
"update_permissions",

],
"system.Everyone": [

"read_definition"
]

}

Note: It can be useful if you need to remove permissions associated to an unknown id for example.

6.3 Daybed field types

A field is defined with these global properties:

• label: human readable field label

• name: storage attribute name

• type: kind of value to be stored

• required: mandatory attribute (optional, default: true)

• hint: help text (optional)

You then have different types of fields, all detailed in this section.

24 Chapter 6. More documentation

Daybed Documentation, Release 1

6.3.1 Basic types

Basic types don’t have specific properties.

• int: An integer

• string: A set of characters

• text: A text

• email: A valid email

• url: A valid URL

• decimal: A decimal number

• boolean: A boolean

For example, when combining global properties and one of those basic field, it becomes:

{
"label": "Task item",
"name": "task",
"type": "string"

}

You just have to choose a type among those available.

6.3.2 Advanced types

• enum: A choice among values

Specific parameters:

– choices: An array of strings

{
"label": "Task status",
"name": "status",
"type": "enum",
"choices": [

"done",
"todo"

]
}

• choices: Multiple choices among values

Specific parameters:

– choices: An array of strings

{
"label": "Hobbies",
"name": "hobbies",
"type": "choices",
"choices": [

"Litterature",
"Cinema",
"Mountain Bike",
"Motor Bike",
"Sailing"

6.3. Daybed field types 25

Daybed Documentation, Release 1

]
}

• range: A number within limits

Specific parameters:

– min: An integer which is the minimum value of the field

– max: An integer which is the maximum value of the field

It will accept a value that is greater than or equal to min and less than or equal to max.

{
"label": "Mountain bike Wheel Size (in mm)",
"name": "wheel-size",
"type": "range",
"min": 239,
"max": 622

}

• regex: A string matching a pattern

Specific parameters:

– regexp: The pattern the value should match to be valid.

{
"label": "French Mobile Phone Number",
"name": "phone-number",
"type": "regex",
"regex": "^0[6-7][0-9]{8}$"

}

• date: A date in yyyy-mm-dd format

Specific parameters:

– autonow: Boolean, add the current date automatically if true. (default: false)

{
"label": "Date of Birth",
"name": "date",
"type": "date",
"autonow": true

}

• datetime: A datetime in yyyy-mm-ddTHH:MM:SS format

Specific parameters:

– autonow: Boolean, add the current datetime automatically if true. (default: false)

{
"label": "Time of Birth",
"name": "date_of_birth",
"type": "datetime"

}

• group: A group of fields, can define fieldsets or multi-pages forms.

Specific parameters:

– description: A string to describe the group.

26 Chapter 6. More documentation

Daybed Documentation, Release 1

– fields: A list of fields of the group.

{
"label": "Fieldset",
"type": "group",
"fields": [

{
"label": "Gender",
"name": "gender",
"type": "enum",
"choices": [

"Mr",
"Miss",
"Ms"

]
},
{

"label": "Firstname",
"name": "firstname",
"type": "string"

},
{

"label": "Lastname",
"name": "lastname",
"type": "string"

}
]

}

Groups are ignored during validation, and records are posted like this:

{"gender": "Mr", "firstname": "Remy", "lastname": "Hubscher"}

• annotation: A model description field not used for validation No specific parameters.

{
"label": "Title 1",
"type": "annotation",

}

The annotation type is not really a field because the record has no trace of it. It can be used to add a description
between fields.

Like the group field type, it can help to build the form layout.

For instance:

{"definition":
{
"title": "Club members",
"description": "Name and pictures of all members",
"fields": [

{
"label": "First and last name",
"name": "fullname",
"type": "string"

},
{

"label": "Providing a picture is optional",
"type": "annotation",

6.3. Daybed field types 27

Daybed Documentation, Release 1

"css": "font-weigth: bold"
},
{

"label": "Picture",
"name": "picture",
"type": "url",
"required": false

}
]

}
}

The css property is just an example of how we could handle the styling of the annotation here, but it could be anything
else.

• json: A JSON value No specific parameters.

Beyond formatting, the content is not validated

{
"label": "JSON object",
"name": "movie",
"type": "json"

}

Then you can use it like so:

{
"movie": {
"title": "The Island",
"director": "Michael Bay",
"actors": ["Scarlett Johnsson", "Erwan McGregor"],
"year": 2005

}
}

It will also work with a string :

{
"movie": "{\"title\": \"The Island\"}"

}

6.3.3 Nested types

• object: An object inside another model

Specific parameters, used to validate the content. Only one of them should be specified.

– fields: A list of fields like in a model definition.

– model: The id of an existing model.

Unlike the json type, the content will be validated, using either the list of fields or the definition of the specified
model

{
"label": "Movie",
"name": "movie",
"type": "object",
"fields": [

28 Chapter 6. More documentation

Daybed Documentation, Release 1

{
"label": "Title",
"name": "title",
"type": "string"

},
{

"label": "Director",
"name": "director",
"type": "string"

},
{

"label": "Actors",
"name": "actors",
"type": "list",
"item": {"type": "string"}

}
]

}

For example, this record will be valid for the definition above:

{
"movie": {
"title": "Donnie Darko",
"director": "Richard Kelly",
"actors": ["Jake Gyllenhaal", "Patrick Swayze"],

}
}

But this one will not:

{
"movie": {
"title": "Director and actors missing",

}
}

• list: A list of values inside another model

Specific parameters:

– item: Defines the type of the list items. Specified like a field in a model definition.

Can be used to define a simple list of basic types (integer, string, ...):

{
"label": "Movie titles",
"name": "movies",
"type": "list",
"item": {
"type": "string"

}
}

Or a list of advanced field types (dates, objects, ...):

{
"label": "Movie list",
"name": "movies",
"type": "list",
"item": {

6.3. Daybed field types 29

Daybed Documentation, Release 1

"type": "object",
"hint": "Description of a movie",
"fields": [

{
"label": "Title",
"name": "title",
"type": "string"

},
{

"label": "Director",
"name": "director",
"type": "string"

}
]

}
}

If item is not specified, the list items can be anything (e.g. no validation will be done on them):

{
"label": "Last thoughts",
"name": "toughts",
"type": "list"

}

The following records will be considered valid with the definition above:

{ "toughts": [1, 2, 3] }

{ "toughts": [{"miam": true}, 42, ["OSM", "Mapnik"], "World Company"] }

6.3.4 Relation types

• anyof: Any number of choices among records of a given model

Specific parameters:

– model: The model id from which records can be selected

{
"name": "actors",
"type": "anyof",
"model": "generic:people:moviestars",
"label": "Movie actors"

}

• oneof: One choice among records of a given model

Specific parameters:

– model: The model id from which the record can be selected

{
"name": "maincharacter",
"type": "oneof",
"model": "generic:people:moviestars",
"label": "Main character"

}

30 Chapter 6. More documentation

Daybed Documentation, Release 1

6.3.5 Geometric types

• geojson: A GeoJSON geometry (not a FeatureCollection) No specific parameters.

{
"label": "where is it?",
"name": "place",
"type": "geojson"

}

Then you can use it like so:

http POST http://localhost:8000/v1/models/todo/records \
item="work on daybed" status="done" \
place='{"type": "Point", "coordinates": [0.4, 45.0]}' \
--verbose --auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

{
"item": "work on daybed",
"place": {
"coordinates": [

0.4,
45.0

],
"type": "Point"

},
"status": "done"

}

• point: A point

Specific parameters:

– gps: A boolean that tells if the point coordinates are GPS coordinates and it will validate that
coordinates are between -180,-90 and +180,+90 (Default: true)

{
"label": "where is it?",
"name": "place",
"type": "point"

}

Then you can use it like so:

http POST http://localhost:8000/v1/models/todo/records \
item="work on daybed" status="done" \
place="[0.4, 45.0]" \
--verbose --auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

{
"item": "work on daybed",
"place": [
0.4,
45.0

],
"status": "done"

}

• line: A line made of points

6.3. Daybed field types 31

http://geojson.org/

Daybed Documentation, Release 1

Specific parameters

– gps: A boolean that tells if the point coordinates are GPS coordinates and it will validate that
coordinates are between -180,-90 and +180,+90 (Default: true)

{
"label": "where is it?",
"name": "place",
"type": "line"

}

Then you can use it like so:

http POST http://localhost:8000/v1/models/todo/records \
item="work on daybed" status="done" \
place="[[0.4, 45.0], [0.6, 65.0]]" \
--verbose --auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

{
"item": "work on daybed",
"place": [
[

0.4,
45.0

],
[

0.6,
65.0

]
],
"status": "done"

}

• polygon: A polygon made of a closed line

Specific parameters

– gps: A boolean that tells if the point coordinates are GPS coordinates and it will validate that
coordinates are between -180,-90 and +180,+90 (Default: true)

{
"label": "where is it?",
"name": "place",
"type": "polygon"

}

Then you can use it like so:

http POST http://localhost:8000/v1/models/todo/records \
item="work on daybed" status="done" \
place="[[[0.4, 45.0], [0.6, 65.0], [0.8, 85.0], [0.4, 45.0]]]" \
--verbose --auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

{
"item": "work on daybed",
"place": [
[

[
0.4,

32 Chapter 6. More documentation

Daybed Documentation, Release 1

45.0
],
[

0.6,
65.0

],
[

0.8,
85.0

],
[

0.4,
45.0

]
]

],
"status": "done"

}

6.4 Permissions

In Daybed, permissions will let you define access rules on models, records and even permissions.

They allow to express rules like:

• “Everyone can create new records on this model”

• “Alexis is able to delete records created by others”

• “Authenticated users can modify their own records”

• “Everyone can read the model definition”

This section describes how they work and how to use them.

6.4.1 Models permissions

Here’s a list of permissions you can define on a model:

• read_definition: read the model definition

• read_permissions: read the model permissions (who can do what)

• update_definition: update the model definition

• update_permissions: change the permissions for the model

• delete_model: delete the model

• create_record: add an entry to the model

• read_all_records: read all model’s records

• update_all_records: update all model’s records

• delete_all_records: delete any model’s records

• read_own_records: read records on which you are an author

• update_own_records: update and change records on which you are an author

6.4. Permissions 33

Daybed Documentation, Release 1

• delete_own_records: delete records on which you are an author

6.4.2 Views permissions

At the API level, you will often need more than one permission to get access to an API resource.

For example, if you want to get a complete model (definition and records), you will need the following permissions:

• read_definition and read_permissions

• read_all_records or read_own_records

6.4.3 Global permissions

There are three extra permissions that are configured at the server level:

• create_model: List of identifiers allowed to create a model

• create_token: List of identifiers allowed to create tokens

• manage_tokens: List of identifiers allowed to delete tokens

Those are configured via a configuration file, with the following options:

• create_model: daybed.can_create_model (default: Everyone)

• create_token: daybed.can_create_token (default: Everyone)

• manage_tokens: daybed.can_manage_token (default: None)

Example:

[app:main]
daybed.can_create_model = Authenticated
daybed.can_create_token = Everyone

6.4.4 Usage

Permissions are set on models, as a dictionnary between identifiers (key id) and lists of permissions.

In order to refer to anyone in the world, use the special id Everyone and to authenticated users with
Authenticated.

Note: As explained in the API usage section, the key ids look like tokens, but they are different : the id is the public
part of your credentials. The session token is private, since it contains the secret key.

When you create a model, you gain the full set of available permissions.

This means that the identifier you used in the request will be associated to all permissions:

http GET http://localhost:8000/v1/models/todo/permissions --verbose \
--auth-type=hawk \
--auth='ad37fc395b7ba83eb496849f6db022fbb316fa11081491b5f00dfae5b0b1cd22:'

{
"e0394574578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca": [

"create_record",
"delete_all_records",
"delete_model",

34 Chapter 6. More documentation

Daybed Documentation, Release 1

"delete_own_records",
"read_all_records",
"read_definition",
"read_own_records",
"read_permissions",
"update_all_records",
"update_definition",
"update_own_records",
"update_permissions"

]
}

Let’s say you want to allow authenticated users to create records and manage their own records on this model.

Permissions become:

{
"Authenticated": [

"create_record",
"read_own_records",
"update_own_records",
"delete_own_records"

],
"e0394574578356252e2033b829b90291e2ff1f33ccbcbcec777485f3a5a10bca": [

"create_record",
"delete_all_records",
"delete_model",
"delete_own_records",
"read_all_records",
"read_definition",
"read_own_records",
"read_permissions",
"update_all_records",
"update_definition",
"update_own_records",
"update_permissions"

]
}

Modification

You can use - and + to modify the existing set of permissions for an identifier.

To grant create_record to anonymous users, read_permissions to authenticated users and remove
update_permissions from id 220a1c..871 you would have to send the following request:

{
"Everyone": ["+create_record"],
"Authenticated": ["+read_permissions"],
"220a1c..871": ["-update_permissions"]

}

In order to add/remove all permissions to/from somebody, use the ALL shortcut:

{
"Authenticated": ["-ALL"],
"220a1c..871": ["+ALL"]

}

6.4. Permissions 35

Daybed Documentation, Release 1

Note: + is implicit, the permission is added if not specified (i.e. ALL is equivalent to +ALL).

6.4.5 Concrete examples

Collaborative editor (pad)

Everybody can read, create, modify and delete everyone’s records. However only the owner (id 220a1c..871) can
modify the model definition and adjust permissions.

{
"Everyone": [

"read_definition",
"create_record",
"read_all_records",
"update_all_records",
"delete_all_records"

],
"220a1c..871": [

"ALL"
]

}

If the administrator wants to share her privileges with others, she can either:

• share her token

• create a new token, assign permissions to its key id, and share the new token

{
"Everyone": [

"read_definition",
"create_record",
"read_all_records",
"update_all_records",
"delete_all_records"

],
"6780dd..df1": [

"update_definition",
"read_permissions",
"update_permissions"

],
"220a1c..871": [

"ALL"
]

}

Online poll

Everybody can answer the poll, but are not allowed to correct their answers, nor to see the poll results.

read_definition is given to everyone, as it might be used to build the form on the client-side:

{
"Everyone": [

"read_definition",
"create_record"

36 Chapter 6. More documentation

Daybed Documentation, Release 1

],
"220a1c..871": [

"ALL"
]

}

TODO-list application

The development team, who created the model, has the full set of permissions.

Everybody can manage their own records, but they are private.

{
"Everyone": [

"read_definition",
"create_record",
"read_own_records",
"update_own_records",
"delete_own_records"

],
"220a1c..871": [

"ALL"
]

}

Note: Using Everyone instead of Authenticated will allow anonymous to manage a set of records that are shared
among all anonymous users.

Note: Users can share their todo list if they share their token. But they cannot share it as read-only.

In order to accomplish this, instead of having a unique model with everyone’s records, each user will have to create
their own model, on which they will gain the control of permissions.

6.5 Terminology

Daybed concepts are very similar to those of any other storage or model validation software.

Credentials Credentials are a way to authenticate yourself, and are composed of two parts:

1. an id – identifier that you can publicly share

2. a key – similar to a password (you may prefer to not share it)

Definition A schema defined as a list of fields, each one with a name, a type and potential parameters.

Field A model definition is composed of multiple fields. Each one contains a name and a type.

Field type A type, among those available, whose purpose is to validate values (e.g. int, date, ...). It may have
mandatory or optional parameters, when used in a definition (e.g. choices, regex, ...).

Identifier, Identifiers A unique id, part of the credentials, that will be associated to the models and records you
created.

Identifiers are used to define permissions.

Model, Models A model is made of a definition, a set of records, and a list of permissions.

6.5. Terminology 37

Daybed Documentation, Release 1

Permission, Permissions An operation name used to allow or deny requests on models, records or tokens. Permis-
sions are given to identifiers as an associative array on models.

For example, when trying to delete a record, if the request’s identifier doesn’t have delete_records among
its permission on this model, the permission will be denied.

See permissions section.

Record, Records An item to be stored in a model. It should provide a value for each required field of the definition.

Token, Tokens, Hawk-Session-Token An unique string from each pair of id and key, and helps you keep, handle or
share your credentials as a simple string.

38 Chapter 6. More documentation

Python Module Index

d
daybed.schemas, 24

39

Daybed Documentation, Release 1

40 Python Module Index

Index

C
Credentials, 37

D
daybed.schemas (module), 24
Definition, 37

F
Field, 37
Field type, 37

H
Hawk-Session-Token, 38

I
Identifier, 37
Identifiers, 37

M
Model, 37
Models, 37

P
Permission, 38
Permissions, 38

R
Record, 38
Records, 38

T
Token, 38
Tokens, 38

41

	Why ?
	How ?
	Use Cases
	Technologies
	Comparison
	More documentation
	Installing Daybed
	How to use the Daybed API
	Daybed field types
	Permissions
	Terminology

	Python Module Index

